2015年4月26日星期日

Discovery could yield more efficient portable electronics, solar cells -- ScienceDaily

Discovery could yield more efficient portable electronics, solar cells -- ScienceDaily

Writing this week (March 23, 2015) in the Proceedings of the National Academy of Sciences (PNAS), a team led by UW-Madison chemistry Professor Mark Ediger describes a method capable of routinely imposing order on organic glasses by enabling their production so that the molecules that make up the glasses are ideally positioned.

"Glasses are usually isotropic, meaning their properties are the same from any direction," explains Ediger, a world expert on glass, who conducted the study with UW-Madison researchers Shakeel Dalal and Diane Walters.

Glass, says Ediger, can be made from any number of materials. The most familiar, of course, is window glass, made primarily of the mineral silica. But other types of glass can be made of metal and other materials, and nature makes its own variants such as the volcanic glass obsidian. Organic glasses are made using materials based on carbon instead of silica.

The new organic glasses devised by Ediger's team "have the molecules oriented in specific ways, standing up or lying down," he explains. The orientation affects performance and can confer greater levels of efficiency and durability in the devices they are used in.

While there is precedent for making organic glasses like those described in the new PNAS report, Ediger's team, working with Juan de Pablo and Ivan Lyubimov of the University of Chicago's Institute for Molecular Engineering, delved deep into the process and discovered the key for controlling molecular orientation during manufacture. The process can be exploited to easily and routinely make organic glasses whose molecules are better regimented, conferring enhanced properties of interest.

The discovery is important because organic glasses are widely used in what are called organic light-emitting diodes, the active elements of the displays used in some portable consumer electronics such as cellphones. Perhaps more significantly, the finding by Ediger's team could help advance improved photovoltaic devices, such as solar cells, which convert light to electricity.

"We're thinking about the next generation of photovoltaics," says Ediger, noting that the use of organic glasses in things like solar cells has so far been limited. "That technology is commercially immature and improved control over material properties could have a big impact."

Organic solar cells may prove less expensive to produce than the crystalline silicone photovoltaics commonly used now, he says.

In portable electronics, the work could help underpin new ways to build more durable screens. As many as 150 million such displays are manufactured for cellphones alone each year and the new discovery could result in displays that produce more light using as much as 30 percent less energy.

The key identified by Ediger and his colleagues lies in a process called physical vapor deposition, which is how the organic light-emitting diodes that make up portable electronic displays are mass produced. The process for making the diodes occurs in a vacuum chamber where molecules are heated and evaporated, and then condense in ultrathin layers on a substrate to form the light-emitting display of a cellphone or other device.

"What is new in our work is that we have systematically explored the important control variable, the substrate temperature, and discovered a general pattern for molecular orientation that can be exploited," says Ediger. "Furthermore, we now understand what controls the orientation trapped in particular glasses."

The upshot, he says, could be organic light-emitting diodes substantially more energy efficient than those currently in use.

The study was supported by the U.S. Department of Energy and the National Science Foundation.


Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


LED part TDK IC AVX Resistors Current Sensors Resistors IDT IC Schottky Diodes YAGEO Resistors PANASONIC Connectors Resistors Industrial IC ELPIDA IC MOTOROLA IC INFLNEON Diodes LED Other Parts ST Diodes ON Diodes Electronic News AGILENT LED NXP Diodes ST Transistors VISHAY IC Transistors Freescale AD IC NXP Transistors SANYO IC Civil IC ALTERA IC ROHM Resistors Chip Inductors INTERSIL IC Kingbrigt LED Fast Recovery Diodes BB IC NEC Diodes DIODES Transistors Voltage Regulators Transistors TOSHIBA Transistors Thin Film Resistors
http://www.suvsystem.com/a/43513.aspx