2015年5月1日星期五

Desirable defects: Flaws introduced to liquid crystals could lead to new generation of advanced materials -- ScienceDaily

Desirable defects: Flaws introduced to liquid crystals could lead to new generation of advanced materials -- ScienceDaily

"Generally, flaws are the last thing you'd want in a liquid crystal," explains Giuseppe D'Adamo, postdoctoral fellow at SISSA. "However, this new method allows us to exploit the defects in the material to our advantage." D'Adamo is first author of a paper just published in Physical Review Letters. The study made computer models of colloidal suspensions in liquid crystals subjected to electrical fields modulated over time. Colloids are particles in suspension (i.e., a condition halfway between dispersion and solution) in a liquid.

These composite materials have been receiving plenty of attention for their optical properties for some time now, but the use of electrical fields to modify them at will is an absolute novelty. "Our simulations demonstrate that by switching on or off an electrical field of appropriate intensity we can re-order the colloids by arranging them into columns or planes," comments Cristian Micheletti of SISSA, co-author of the paper. "This easy-to-control plasticity could make the material suitable for optical-electronic devices such as e-readers, for example."

Liquid crystals are particular types of liquids. In a normal liquid, molecules have no systematic arrangement and, viewed from any angle, they always appear the same. The molecules forming liquid crystals, by contrast, are arranged in precise patterns often dictated by their shape. To get an idea of what happens in a liquid crystal, imagine a fluid made up of tiny needles which, instead of being arranged chaotically, all point in the same direction. This also means that if we look at the liquid from different viewpoints it will change in appearance, for example it might appear lighter or darker (have you ever seen this happen in LCD monitors, especially the older models?).

"The useful natural tendency of liquid crystal molecules to spontaneously arrange themselves in a certain pattern can be counteracted by introducing colloids in the fluid. In our case, we used microscopic spherical particles, which 'force' the molecules coming into contact with their surface to adapt and rotate in a different direction" explains D'Adamo. "This creates 'defect lines' in the material, i.e., circumscribed variations in the orientation of molecules which result in a local change in the optical properties of the medium."

These defect lines have an important effect: they enable remote interactions among colloidal particles, by holding them together as if they were thin strings. "Liquid crystal molecules tend to align along the electrical field. By switching the field on and off we create competition between the spontaneous order of the liquid crystal, the order dictated by the surface of the colloidal particles and, finally, the order created by the electrical potential," says Micheletti. "This competition produces many defect lines that act on the colloids by moving them or clustering them."

"It's a bit like pulling the invisible strings of a puppet: by carefully modulating the electrical fields we can, in principle, make all the particles move and arrange them as we like, by creating defect lines with the shape we want" continues D'Adamo. "An important detail is that the colloidal configurations are metastable, which means that once the electrical field has been switched off the colloids remain in their last position for a very long time."

In brief, this implies that the system only requires energy when it changes configuration, a major saving. "In this respect, the method works like the electronic ink used in digital readers, and it would be interesting to explore its applicability in this sense," concludes Micheletti. The study, carried out with the collaboration of SISSA, the University of Edinburgh and the University of Padova, has been included as an Editors' Suggestion among the Highlights of the journal Physical Review Letters.


Welcome to SUV System Ltd!

SUV System Ltd is ISO 90012008 Certified electronics distributor with 10 years of experiences.

We have built up long term business relationship with about many companies which are stockers and authorized agents. we have a steady and reliable supply to meet customer's demands to the greatest extent .Confidently, we are able to lower your cost and support your business with our years of professional service.

SUV System Ltd is Electronic Components Distributor Supplies,Find Quality Electronic Components Supplies Products IC(Integrated Circuits),Connectors,Capacitor,Resistors,Diodes,Transistors,LED at Suvsystem.com. Sourcing Other Energy, Environment, Excess Inventory Products from Manufacturers and Suppliers at Suvsystem.com

Electronic Components distributor:http://www.suvsystem.com

Connectors Distributor:http://www.suvsystem.com/l/Connectors-1.html

IC Distributor:http://www.suvsystem.com/l/IC(Integrated-Circuits)-1.html

LED Distributor:http://www.suvsystem.com/l/LED-1.html

Capacitor Distributor:http://www.suvsystem.com/l/Capacitor-1.html

Transistor Distributor:http://www.suvsystem.com/l/Transistors-1.html

Resistor Distributor:http://www.suvsystem.com/l/Resistors-1.html

Diode Distributor:http://www.suvsystem.com/l/Diodes-1.html

SUV System Ltd insists on the managing faith ofsincereness,speciality,foresight, win-win,so we build up stable-relationship customers located all over the world, including the States, Europe, Argentina, UAE, Malaysia, Australia,and India etc

we are focus on the following fields,and hope we can help you.


Chip Ferrite Beads Switches TOSHIBA Diodes TI IC High Precision Resistors Military IC BB IC PANASONIC Industrial IC Transistors DIODES Transistors Xilinx IC Resistor Arrays Thick Film Resistors NEC Diodes IC(Integrated Circuits) TDK IC VISHAY IC IDT IC MAXIM IC NS IC Digital Transistors INFLNEON Diodes Freescale Semiconductor IR Diodes Ligitek LED Diodes Rectifier Diodes Chip Fuses Voltage Regulators Transistors TOSHIBA Transistors MURATA IC FAIRCHILD diodes NEC Transistors AD IC Atmel IC Multi-units Transistors ST Transistors Current Sensors Resistors Fleld Effect Transistors
http://www.suvsystem.com/a/44663.aspx